Cytology

Levels of Organization (2-4)

Plant Cell (14-31)

Cell Theory (5-12)

Unicellular vs. Multicellular (32)

Prokaryotic vs. Eukaryotic (14)

Cell Membrane & Cellular Transport (33-39)

Animal Cell (14-31)

Cytology – The study of the "CELL"

Analogy of "The Brick"

Cytology – The study of the "CELL"

The Levels of Organization

The Cell Theory

2

Photosynthesis and Respiration:
What's the Connection?

Photosynthesis
Light energy, carbon dioxide,
and water are used to make
glucose in chicroplasts. Oxygen
is released.

Light
Energy

CO₃ + H₂O

Chloroplast

Mitochendrion

Oxygen and the energy in
glucose are used for make ATP.
ATP is a molecule that stores
energy in a form that calls can
use. ATP is produced by
mitochendria. Carbon droxide
and water are also released.
Callular respiration occurs in
both plant and animal calls.

3

Historical Contributors

Historical Contributors

Hans & Zacharias Janssen (1600)

Robert Hooke (1665)

- English Scientist
- Looked at cork through a compound microscope
- Observed tiny room-like structures
- •Called these structures "Cells
- •Only saw outer walls of the cells because cork cells are not alive

Anton Van Leeuwenhoek (1680)

- Dutch fabric merchant and amateur scientist
- Looked at blood, scrapings from teeth and rain water through a simple microscope (1 Lens)
- Observed living cells called some "animalcules"
- •Some of the small "animalcules" are now called bacteria.

Matthias Schleiden (1838)

- German Botanist
- Viewed plant parts under a microscope
- Discovered that plant parts are made of cells

Theodor Schwann (1839)

- •German Zoologist
- ·Viewed animal parts under a microscope
- Discovered that animal parts are made of cells

Rudolf Virchow (1855)

Rudolf Virchow (1821-1902)

- •German Physician
- •Stated that all living cells come from other living cells

Prokaryotic vs. Eukaryotic Cells

Animal Cell

Animal Cell

Nucleus

The Nucleus controls most cell activities and contains the hereditary information of DNA

Nucleolus

Found within the nucleus, site of ribosome formation

Endoplasmic Reticulum

Responsible for the modification and transportation of proteins throughout the cell

Rough ER = Ribosomes attached Smooth ER = No Ribosomes attached

Mitochondria

Site of Cellular Respiration
Uses energy from food to make ATP (cellular Energy)

Cell Membrane - Fluid Mosaic Model

Regulates what enters and leaves the cell and also provides protection and support

Golgi Body

Serve as processing, packaging, and storage centers for the products released from the cell

Centrioles

Found in Animal Cells and involved in cell division

Fluid-filled organelles that serve as storage sites for certain cell products

i.e. Food Vacuole, Contractile Vacuole

Lysosome

Contain digestive enzymes and responsible for the digestion of worn-out cell parts

WBC's contain lysosomes to digest bacteria ingested by the WBC

Ribosome

Site of Protein Synthesis

- -some are attached to the ER
- -some are free in the cytoplasm

Chloroplast

Contains the photosynthetic pigments – Chlorophyll Site of Photosynthesis – food making process in plants

Cell Wall

Found in plants and most Prokaryotic Cells

Lies outside the cell membrane and gives shape and provides protection for the cell

-Made of nonliving material called cellulose in plants

Cytoplasm

Watery material lying within the cell between the cell membrane and the nucleus

Most of the chemical reactions of the cells Metabolism take place in the cytoplasm

Plant Cell

Plant Cell

Unicellular vs. Multicellular

VS.

Cell Membrane – Fluid Mosaic Model

Passive Transport

Diffusion

Osmosis

Active Transport

Osmosis – Effect of Different Solutions on Cells

Osmosis – Effect of Salt Solutions on Cells

Isotonic Solution

 Equal % solute and solvent as cell

99% H₂O 1% Salt

Hypertonic Solution

Higher % solute
 Lower % solvent
 than cell

95% H₂O 5% Salt

Hypotonic Solution

Lower % solute
 Higher % solvent
 than cell

100% H₂O 0% Salt

